• Main
  • Useful links
  • Information for Contributors
  • About
  • Editorial board

  • Article
    Bychkov O. I., Liashenko O. O., Poteiko P. I., Konstantynovskaja O. S., Galaichenko O. M.


    About the author: Bychkov O. I., Liashenko O. O., Poteiko P. I., Konstantynovskaja O. S., Galaichenko O. M.
    Type of article Review article
    Annotation Using viruses as treatment of infectious diseases has wide experience, and it is potential alternative (or at least an additional supplement)to antibiotic therapy. Considering the experience of the phage treatment of bacterial infections, including and non-tuberculous mycobacterial disease, we suggest possibility of development of viral-based treatment for tuberculosis with M. tuberculosis-virulent bacteriophages. Mycobacteriophagesare usedin scientific practice, as model organisms for study of divergence of morphological features and structure of genome during viral evolution, as well as to study the phenomenon of viral lysogeny. It is expected, that phage treatment will significantly reduce morbidity and mortality because of tuberculosis, especially in severe cases or for patients with poor tolerance of standard treatment of tuberculosis, and may help to avoid complications associated with chronic tuberculosis infection. The significant advantage of bacteriophage treatment is possibilityof managing children and pregnant women. In addition to the experience of using bacteriophages in tuberculosis and other septic and infectious diseases, the article describes examples of viruses infecting of Mycobacterium (D29, L5, TM4, Bo4, DS6A, Bxb1), which havean experimental confirmation of infections of mycobacteria, including M. tuberculosis. This article briefly describes an applicability of these viruses for diagnostic purposes, which are to determine drug resistance of M. tuberculosis. It is assumed that lysogenic phages can be used as a tool for specific prophylaxisby creating a recombinant BCG vaccine. Furthermore, the article considers capabilities of these viruses, for designing polyphagic drug with high efficacy that can avoid possible emergence of resistant strains. Among the notable features are the ability of Bxb1 to insert its genes into the mycobacterial genome site,which is responsible for the mycolate synthesis, and a possibility of DS6A to infect all species of tuberculosis complex (M. tuberculosis, M. bovis, M. africanum). ТМ4 иD29 have been tested in an experiments of delivering them into macrophages with liposomal capsules. Potential problems, that can arise while using viral drugs (which includes mutagenic effect, difficulties at the stage of delivery to the site of infection, an immune response of the organism to phages), and suggestions of some possible ways to eliminate them, are revealed in the end of an article.
    Tags tuberculosis, mycobacteriophage, treatment of tuberculosis, M. tuberculosis, phagotype
    • Vorotyintseva N. V. Fagoterapiya i fagoprofilaktika ostryih kishechnyih infektsiy u detey / N. V. Vorotyintseva, Yu. P. Solodovnikov, L. N. Milyutina [i dr.] // – M., - 1991. –11 s.
    • Zemskova Z. S. Patomorfologicheskaya otsenka lechebnogo deystviya mikobakteriofagov pri tuberkuleze / Z. S. Zemskova, I. R. Dorozhkova // Problemyi tuberkuleza, - 1991 - 11, C.63-66.
    • Zaharova Yu. A. Ispolzovanie bakteriofagov u beremennyih s pielonefritom : avtoref. dis. … kand. med. – Perm, - 2004.– 19 s.
    • Kozmin-Sokolov B.N. Vliyanie mikobakteriofagov na techenie eksperimentalnoy tuberkuleznoy infektsii u belyih myishey / B. N. Kozmin-Sokolov, G. I. Vavilin, L. N. Ertevtsian [i dr.] // Problemyi tuberkuleza. – 1975. – No 4. – S. 75-79.
    • Kurunov Yu. N. Effektivnost liposomalnoy lekarstvennoy formyi antibakterialnyih preparatov v ingalyatsionnoy terapii eksperimentalnogo tuberkuleza. / Yu. N. Kurunov, I. G. Ursov, V. A. Krasnov [i dr.] // Problemyi tuberkuleza, - 1995. – No 1. – S. 38-40.
    • Kisina V.I. Fagoterapiya vospalitelnyih urogenitalnyih zabolevaniy u zhenschin / V. I. Kisina, T. S. Perepanova, K. I. Zabirov [i dr.] // Vestn. dermatol. i venerol. – 1996. – No 5. –75 s.
    • Krasilnikov I. V. Preparatyi bakteriofagov: kratkiy obzor sovremennogo sostoyaniya i perspektiv razvitiya / I. V. Krasilnikov, K. A. Lyisko, E. V. Otrashevskaya [i dr.] // Sibirskiy meditsinskiy zhurnal.-2011.-No 2-2.-Tom 26.-S. 33-37.
    • Kurunov Yu. N. Sposob fagoterapii tuberkuleza, zaklyuchayuschiysya v ispolzovanii liticheskogo mikobakteriofaga, otlichayuschiysya tem, chto ispolzuyut regionarnuyu limfogennuyu dostavku liposomalnoy formyi mikobakteriofaga D29 / Yu. N. Kurunov, N. N. Kurunova, N. D. Shatalova // Patent RF No 2214829 ot 05.11.2001
    • Nakaz MOZ Ukrayiny No 620 vId 04.09.2014 r. Unifikovaniy klinichniy protokol pervinnoyi, vtorinnoyi (spetsializovanoyi) ta tretinnoyi (visokospetsializovanoyi) medichnoyi dopomogi doroslim.
    • Stefanov A. V. Biohimicheskie osnovyi ispolzovaniya liposom v kachestve perenoschikov biologicheski aktivnyih veschestv. / A. V. Stefanov // - Kiev, - 1987, S. 3, 19-20, 25, 32.
    • Bardarov S. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. Smegmatis / S. Bardarov, Jr. S. Jr. Bardarov, Jr. MS. Jr. Pavelka [et al.] // Microbiology. – 2002. – Vol. 148, №10. – P.3007-3017.
    • Broxmeyer L. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a Mycobacteriophage Delivered by a Nonvirulent Mycobacterium: A Model for Phage Therapy of Intracellular Bacterial Pathogens / L. Broxmeyer, D. Sosnowska, E. Miltner [et al.] // J Infect Dis. – 2002. – Vol.186, №8. – P.1155-1160.
    • Cole S. T. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence / S. T. Cole, R. Brosch, J. Parkhill [et al.] // Nature.-1998.-Vol. 393, №8.-P.537-544.
    • Doke S. Studies on mycobacteriophages and lysogenic mycobacteria. / S. Doke // Kumamoto Med J. – 1960. – Vol. 43. – P.1360–1373.
    • Donnelly-Wu MK. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria / MK. Donnelly-Wu, WR. Jr. Jacobs, GF. Hatfull // Mol Microbiol. – 1993. – Vol.7, №4. – P.407-417.
    • Danelishvili L. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent mycobacterium / L. Danelishvili, L. S. Young, L. E. Bermudez [et al.] // Microb Drug Resist. – 2006. – Vol.12, №1. – P.1-6.
    • Froman S. Bacteriophage active against virulent Mycobacterium tuberculosis / S. Froman, W. W. Drake, E. Bogen// Am. J. Public Health. – 1954. – Vol.44. – P.1326-1333.
    • Ford M. E. Genome Structure of Mycobacteriophage D29: Implications for Phage Evolution / Michael E. Ford, Gary J. Sarkis, Belanger A [et al.] // J. Mol. Biol. – 1998. – Vol.279, №1. – P.143-164.
    • Gan Y. Characterization and classification of Bo4 as a cluster G mycobacteriophage that can infect and lyse M. Tuberculosis / Y. Gan, T. Wu // Arch. Microbiol. – 2014. – Vol.196, №3. – P. 209-218.
    • Hauduroy P. Tentative de traitement des hamsters inocules avec le BCG par un bacteriophage. / P. Hauduroy, W. Rosset // Ann Inst Pasteur. – 1963. – Vol. 104. – P.419–420.
    • Hatfull G. F. DNA sequence, structure, and gene expression of mycobacteriophage L5: A phage system for mycobacterial genetics / G. F. Hatfull, G. J. Sarkis // Mol. Microbiol. – 1993. – Vol.7, №7. – P.395-405.
    • Jones W. D. Modification of methods used in bacteriophage typing of Mycobacterium tuberculosis isolates / W. D. Jones, Jr. J. Greenberg // J Clin Microbiol. - 1978. - Vol. 7. - №5. - P.467–469.
    • Jain S. Transcriptional regulation and immunity in mycobacteriophage Bxb1 / S. Jain, G. F. Hatfull // Mol Microbiol. – 2000. – Vol.38, №5. – P.971–985.
    • McNerney R. Mycobacteriophage and their application to disease control / R. McNerney, H. Traoré // J. Appl. Microbiol. – 2005. – Vol. 99, №2. – P.223-233.
    • Ojha A. GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria / A. Ojha, M. Anand, A. Bhatt [et al.] // Cell. – 2005. – Vol. 123, №5. – P. 861-873.
    • Pope W. H. Mycobacteriophages: Insights into the Evolutionary Origins of Mycobacteriophage TM4 / W. H. Pope, C. M. Ferreira, D. Jacobs-Sera [et al.] // PLOS ONE – 2011. – Vol.6, №10. – 26750 p.
    • Rondуn L. Evaluation of fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis / L. Rondón, M. Piuri, WR. Jr. Jacobs // J Clin Microbiol. – 2011. – Vol.49, №5. – P.1838-1842.
    • Steenken W. JR. Spontaneous lysis of tubercle bacilli on artificial culture media / W. JR. Steenken // Am. Rev. Tuberc. – 1938. – Vol. 38. – P.777-790.
    • Sarkis, G., Jacobs, W. R., Jr & Hatfull, G. F. // L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. / G. Sarkis, WR.Jr. Jacobs, G. F. Hatfull [et al.] // Mol. Microbiol. – 1995. – Vol.15,№6. – P.1055-1067.
    • Trigo G. Phage Therapy Is Effective against Infection by Mycobacterium ulcerans in a Murine Footpad Model / G. Trigo, T. G. Martins, A. G. Fraga [et al.] // PLoS Negl Trop Dis. – 2013. – Vol.7, №.4 –2183 p.
    Publication of the article «World of Medicine and Biology» №3(51) 1 part 2015 year, 117-121 pages, index UDK 615.331:616-002.5