English Українська
  • Main
  • Useful links
  • Information for Contributors
  • About
  • Editorial board

  • Article
    Zelenetsky I.B., Miteleva Z.M., Snisarenko P.I., Jaresko A.V.

    RELATION OF STRESS-STRAIN STATE IN THE KINEMATIC CHAIN “HIP-AND-KNEE JOINT” WITH THE CERVICAL DIAPHYSEAL ANGLE CHANGING UNDER THE CONDITIONS OF DYSPLASIA


    About the author: Zelenetsky I.B., Miteleva Z.M., Snisarenko P.I., Jaresko A.V.
    Heading CLINICAL MEDICINE
    Type of article Scentific article
    Annotation The article presents the study of biomechanical disorders in the dysplastic process in the hip and knee joints using the finite elements model with different cervical-diaphyseal angles (CDA) of the proximal femoral bone. With the CDA equal to 90°, the femoral neck stress was 42.4 MPa (27.6 in the norm). In the proximal tibia, the level of the stress condition has increased on the medial side up to 17.9 MPa (11.1 normal), and on the lateral side 9.1 MPa (3.5 normal). Thus, on the medial side the stress magnitude is 21.6 MPa (11.2 normal), on the lateral side - 1.7 MPa (2 in the norm). For the CDA equal to 160° the stress in the hip joint reaches 26.5 MPa (27.6 normal). In the proximal tibia on the medial side the tension is 9 MPa (11.1 normal), and on the lateral side it is 3.5 MPa (3.5 normal). Distribution of the stress condition in the knee joint showed that on the medial side the stress magnitude is 13.1 MPa (11.2 normal), and on the lateral side - 3.8 MPa (2 normal). Comparative analysis of the calculations performed for models with different CDA showed that the CDA reduction leads to a significant increase in the stress condition not only in the neck of the femoral bone, but also in the knee joint. Whereas, with increasing CDA the growth of stress-strain state is slight, mainly in the lateral part of the knee joint.
    Tags CDA change, stress-strain state of the hip joint, proximal tibia
    Bibliography
    • Zelenetskyi IB, Yaresko OV, Miteleva ZM. Matematychne modeliuvannia napruzheno-deformovanoho stanu kulshovoho suhloba u ditei pry riznykh znachenniakh shyikovo-diafizarnoho kuta. Ortoped., travmatol. 2012; 4: 20-23. [in Ukrainian]
    • Myteleva ZM, Snisarenko PI, Zelenetskyi IB, Yaresko AV. Issledovaniye napriazhenno-deformirovannogo sostoianyia modeley kolennogo sustava v zavisimosti ot velichiny yarusnoy deformatsii i tolshchiny sustavnogo khriashcha. Travma. 2015; 3(16): 33-38. [in Russian]
    • Pustovoit KB, Pustovoit BA, Kupyn VI, Zbukar OA. Biomekhanichni aspekty umov navantazhennia femoropatelliarnoho zchlenuvannia kolinnoho suhlobu. Zbirnyk naukovykh prats naukovoho sympoziumu z mizhnarodnoyu uchastiu “Aktualni pytannia suchasnoyi ortopediyi ta travmatologiyi” 17-18 veresnia, Dnipropetrovsk: 2015. 84-86. [in Ukrainian]
    • Simenach BI, Baburkina OP, Pustovoit BA. Zabolevaniya kolennogo sustava, obuslovlennyye nasledstvennoy predraspoloshennostyu (lechebno-diagnosticheskaya taktika). Kharkiv: FLP Brovin AV; 2015. 478 s. [in Russian]
    • Solodilov RO, Loginov SI. Vliyaniye osteoartroza kolennogo sustava na biomekhanicheskiye pokazateli tazobedrennogo sustava. Rossiyskiy zhurnal biomekhaniki. 2015; 19(4): 359–371. [in Russian]
    • Bergmann G, Graichen F, Rohlmann A, Bender A, Heinlein B, Duda GN, Heller MO, Morlock MM. Realistic loads for testing hip implants. Bio-Medical Materials and Engineering. 2010; 20(2): 65-75. DOI: 10.3233/BME-2010-0616
    • Devaraj AK, Adhikari R, Acharya KKV, Abhishek S, Shetty AR, Eadara A. Finite element analysis of a human knee joint. NAFEMS India Regional Conference Bangalore, 30-31st August 2016, 1-8.
    • Diplesh Gautam, Venkatesh K P Rao. Classification of diaphysis based on the mechanical response of femur bone. Vibroengineering PROCEDIA. 2019; 29: 182-188. https://doi.org/10.21595/vp.2019.21133.
    • Kurowski PM. Engineering analysis with solid works simulation. 2012. 475 p. ISBN: 978-1-58503-710-0.
    • Mavcic B, Križancic M, Zupanc O, Iglic A, Kralj-Iglic V. Biomechanical model of the shear stress distribution in the femoral neck. Bulletin of Applied Mechanics. 2005; 1(4): 225–230.
    • Netravali NA, Andriacchi ThP, Nicholas JG, Hargreaves BA. Meniscal damage, partial medial meniscectomy, and the development of osteoarthritis [dissertation]. Stanford University; 2011.
    • Pal S. Mechanical Properties of Biological Materials. Chapter II from book Design of Artificial Human Joints and Organs. Springer Science+Business Media New York, 2014. 23-40. DOI 10.1007/978-1-4614-6255-2_2.
    • Vafaeian B, Zonoobi D, Mabee M, Hareendranathan AR, El-Rich M, Adeeb S, Jaremko JL. Finite element analysis of mechanical behavior of human dysplastic hip joints: a systematic review. Osteoarthritis and Cartilage. 2017; 25(4): 438-47. DOI: https://doi.org/10.1016/j.joca.2016.10.023
    • Wagner D, Divringi K, Ozcan C, Grujicic M, Pandurangan B, Grujicic A. Combined musculoskeletal dynamics/structural finite element analysis of femur physiological loads during walking. Multidiscipline Modeling in Materials and Structures. 2010; 6(4): 417-437. https://doi.org/10.1108/15736101011095118
    • Zienkiewicz OC, Taylor RL. The finite element method for solid and structural mechanics. Sixth edition. Butterworth-Heinemann; 2005. 736 p.
    Publication of the article «World of Medicine and Biology» №1(71), 2020 year, 054-058 pages, index UDK 616.728.2-007.1-001.57
    DOI 10.26724/2079-8334-2019-4-70-54-58