English Українська
  • Main
  • Useful links
  • Information for Contributors
  • About
  • Editorial board

  • Article
    O. S. Khukhlina, Z. Ya. Kotsyubiychuk, A. A. Antoniv, O. Ye. Mandryk, O. S. Voyevidka

    INTENSITY OF OXIDATIVE STRESS IN THE COMORBID COURSE OF NON-ALCOHOLIC STEATOGEPATITIS AND DIABETIC KIDNEY DISEASE IN PATIENTS WITH TYPE 2 DIABETES MELLITUS


    About the author: O. S. Khukhlina, Z. Ya. Kotsyubiychuk, A. A. Antoniv, O. Ye. Mandryk, O. S. Voyevidka
    Heading CLINICAL MEDICINE
    Type of article Scentific article
    Annotation 75 patients with non-alcoholic steatohepatitis with comorbid type 2 diabetes mellitus and stage I-IV diabetic kidney disease were examined in the treatment dynamics. It was found that the comorbid course of non-alcoholic steatohepatitis and diabetic kidney disease in patients with type 2 diabetes is accompanied by a significant increase in the intensity of oxidative stress, accompanied by an increase in blood intermediate and final products of lipid peroxidation and oxidative modification of proteins in the range of 1.9-2 times (p <0.05). The damaging effect of oxidative stress in patients with type 2 diabetes leads to activation of hepatocyte apoptosis with an increase in blood cytokeratin-18 (7.5 times, p <0.05), the content of which correlates with the degree of oxidative stress, the intensity of liver damage and the stage of diabetic kidney disease (p <0.05). Оxidative stress increases the risk of endothelial damage by atherosclerotic process due to hyperproduction of homocysteine (3.9 times, p <0.05), which contributes to the progression of diabetic kidney disease. The use of Quercetin in the complex therapy of non-alcoholic steatohepatitis and type 2 diabetes with diabetic kidney disease contributes to a probable decrease in the intensity of oxidative stress, increased activity of antioxidant protection factors (content of reduced glutathione in erythrocytes, glutathione peroxidase activity, catalase). 1.7 times) and endothelial damage (reduction of homocysteine in the blood by 1.9 times) (p <0.05).
    Tags non-alcoholic steatohepatitis, type 2 diabetes mellitus, diabetic kidney disease, apoptosis, atherosclerosis, quercetin
    Bibliography
    • Vovkun TV, Yanchuk PI, Shtanova LYA. Korvityn modulyuye vmist lipidiv u zhovchi shchuriv. Ukr. Biochem. J., 2019;91(6):112–121. doi:https://doi.org/10.15407/ubj91.06.112[in Ukrainian]
    • Dynnyk N.V. Zastosuvannya neinvazyvnykh biomarkeriv ta mistse tsytokeratynu 18 u diahnostytsi patsiyentiv z nealkoholnoyu zhyrovoyu khvoroboyu pechinky. Ukrayinskyy naukovo-medychnyy molodizhnyy zhurnal, 2016; (2(95), 12–18. [in Ukrainian]
    • Rudyk YU.S. Korvityn ta ishemiya miokarda: mekhanizmy kardioprotektsiyi. Ratsionalna farmakoterapiya, 2019; 1-2 (50-51): 34–36.[in Ukrainian]
    • Khukhlina OS, Antoniv AA. Intensyvnist nitrozytyvnoho ta oksydatyvnoho stresu u khvorykh na nealkoholnyy steatohepatyt za komorbidnosti iz khronichnoyu khvoroboyu nyrok. Suchasna hastroenterolohiya.2018;3(101): 21–26. [in Ukrainian]
    • Anand David AV, Arulmoli R, Parasuraman S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn Rev. 2016; 10(20): 84–89.
    • Bartekova M., Radosinska J., Pancza D., Barancik M., Ravingerova T. Cardioprotective effects of quercetin against ischemia-reperfusion injury are age-dependent. Physiol. Res. 2016; 65 (Suppl. 1): S101–S107.DOI: 10.33549/physiolres.933390
    • Jing Z, Wang Z, Li X, Li X, Cao T, Bi Y, Zhou J, Chen X, Yu D, Zhu L, Li S Protective effect of quercetin on posttraumatic cardiac injury. 2016. Sci Rep 6:30812.DOI: 10.1007/s11033-012-2002-4
    • Luca SV, Macovei I, Bujor A, et al. Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr. 2019: 1–34. DOI: 10.1080/10408398.2018.1546669
    • Lu XL, Zhao CH, Yao XL, Zhang HQuercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. 2017. Biomed Pharmacother 85:658–671 DOI: 10.1016/j.biopha.2016.11.077
    • Miltonprabu S, Tomczyk M, SkalickaWoźniak K, et al. Hepatoprotectiveeffect of quercetin: From chemistry to medicine.Food Chem Toxicol. 2017; 108(Pt B): 365–374. DOI: 10.1016/j.fct.2016.08.034
    • Mirsafaei L, Reiner Ž, Shafabakhsh R, Asemi Z. Plant Foods Hum Nutr. Molecular and Biological Functions of Quercetin as a Natural Solution for Cardiovascular Disease Prevention and Treatment. 2020 Sep; 75(3):307–315.DOI: 10.1007/s11130-020-00832-0
    • Son HY, Lee MS, Chang E, et al. Formulation and characterization ofquercetin-loaded oil in water nanoemulsion andevaluation of hypocholesterolemic activity inrats. Nutrients. 2019; 11(2). pii: E244/ DOI: 10.3390/nu11020244
    • Vovkun TV, Yanchuk PI, Shtanova LY, Vesеlsky SP, Reshetnik EN, Shalamay AS, Baranowskyy VA. Exocrine function of the liver in rats exposed to cоrvitin. Int J Physiol Pathophysiol. 2017; 8(3): 207–217.
    • Vovkun T, Yanchuk P, Shtanova L, Veselskiy S, Filimonova N, Shalamay A, Vedmid V. Watersoluble quercetin modulates the choleresis and bile lipid ratio in rats. Gen Physiol Biophys. 2018; 37(1): 111–120.DOI: 10.4149/gpb_2017015
    • Zhang M, Xie Z, Gao W, Pu L, Wei J, Guo C. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutr Res. 2016; 36(3): 271–279. DOI: 10.1016/j.nutres.2015.11.019
    Publication of the article «World of Medicine and Biology» №3(77), 2021 year, 175-178 pages, index UDK 616.36-003.826-06:616.61-02:616.379-008.64]-036.1-08-039.76
    DOI 10.26724/2079-8334-2021-3-77-175-178