English Українська
  • Main
  • Useful links
  • Information for Contributors
  • About
  • Editorial board

  • Article
    E. M. Vazhnichaya, R. V. Lutsenko, O. V. Semaka, T. O. Deviatkina, N. M. Deviatkina, Yu. A. Kurapov, S. Ye. Litvin

    BLOOD GASES AND ELECTROLYTES UNDER USE OF MAGNETITE NANOPARTICLES IN BLOOD LOSS


    About the author: E. M. Vazhnichaya, R. V. Lutsenko, O. V. Semaka, T. O. Deviatkina, N. M. Deviatkina, Yu. A. Kurapov, S. Ye. Litvin
    Heading EXPERIMENTAL MEDICINE
    Type of article Scentific article
    Annotation Blood gases, acid-base balance, and electrolytes were studied under the conditions of correction of acute blood loss in abino rats with magnetite nanoparticles (5–8 nm) obtained by electron-beam technology and incorporated into sodium chloride crystals. It was shown that blood loss decreases total hemoglobin and the volumetric concentration of oxygen, diminishes sodium concentration and increases potassium concentration in the blood. Dissolved and injected intraperitoneally after the blood loss, magnetite nanoparticles (1.35–6.75 mg iron/kg) reduce the partial pressure of carbon dioxide, increase the partial pressure of oxygen, saturation of hemoglobin with oxygen and volumetric oxygen concentration, increase hydrogen index and sodium content, and reduce potassium concentration in the blood. These positive changes develop against the background of an increase in total hemoglobin. They surpass some effects of the traditional iron preparation and can be the basis for further research aimed at the use of magnetite nanoparticles in acute posthemorrhagic syndrome.
    Tags blood gases, electrolytes, acid-base balance, blood loss, magnetite nanoparticles
    Bibliography
    • Vazhnycha OM, Mokliak YeV, Movchan BO, Kurapov YuA, vynakhidnyky ta patentovlasnyky. Sposib likuvannia hostroyi krovovtraty za dopomohoyu nanochastynok oksydu zaliza (ІІ, ІІІ) Patent Ukainy No 103401. 2013 Zhov 10.[in Ukrainian]
    • Vasilev AG, Haytsev NV, Balashov AL, Balashov LD, Kravtsova AA, Trashkov AP., Pahomova MA. O patogeneze sindroma ostroy krovopoteri. Pediatr. 2019; 10(3): 93–100. [in Russian]
    • Baalousha M, Sikder M, Prasad A, Lead J. Merrifield R, Chandler GT. The concentration-dependent behavior of nanoparticles. Environ Chem. 2015 Oct 8; 13(1): 1–3.
    • Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüche R, Kiessling F, Lammers T. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019 Jan 1; 138: 302–25.
    • Dangarembizi R, Erlwanger KH, Mitchell D, Hetem RS, Madziva MT, Harden LM Measurement of body temperature in normothermic and febrile rats: Limitations of using rectal thermometry. Phys Behav. 2017 Oct 1; 179, 162–7.
    • Gokduman K, Bestepe F, Li L, Yarmush ML, Usta OB. Dose-, treatment- and time-dependent toxicity of superparamagnetic iron oxide nanoparticles on primary rat hepatocytes. Nanomedicine London. 2018 Jun; 13 (11): 1267–84/
    • Goldstein JI, Newbury DE, Michael JR, Ritchie NWM, Scott JHJ, Joy DC. Scanning electron microscopy and X-ray microanalysis. 4th ed. New York: Springer, 2018. 550 p.
    • Hasan A. Handbook of Blood Gas / Acid–Base Interpretation. London: Springer, 2009. 362 p.
    • Jeevanandam J, Danquah MK, editors. Research advances in dynamic light scattering. New York: Nova Science Publishers Inc, 2020. 330 p.
    • Macdougall IC, Strauss WE, Dahl NV, Bernard K, Li Z. Ferumoxytol for iron deficiency anemia in patients undergoing hemodialysis. The FACT randomized controlled trial. Clin Nephrol. 2019 Apr; 91(4): 237–45.
    • Mulens-Arias V, Rojas JM, Barber DF. The intrinsic biological identities of iron oxide nanoparticles and their coatings: unexplored territory for combinatorial therapies [Internet]. Nanomaterials. 2020 Apr 27 [cited 2020 Oct 8], 10, 837. Available from: https://doi.org/10.3390/nano10050837
    • Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother. 2010 Jul–Dec; 1(2): 87–93.
    • Pham BTT, Jain N, Kuchel PW, Chapman BE, SA Bickley, JonesSK, Hawkett BS. The interaction of sterically stabilized magnetic nanoparticles with fresh human red blood cells. Int J Nanomedicine. 2015 Oct 23; 10: 6645–55.
    • Ran Q, Xiang Y, Liu Y, Xiang L, Li F, Deng X, Xiao Y, Chen L, Chen L, Li Z. Eryptosis indices as a novel predictive parameter for biocompatibility of Fe3O4 magnetic nanoparticles on erythrocytes [Internet]. Sci Rep. 2015 Nov 5 [cited 2020 Oct 5]; 5: 16209. Available from: https://www.nature.com/articles/srep16209
    • Subramanian RK, Sidharthan A, Maneksh D, Ramalingam L, ManickamAS, Kanthakumar P, Subramani S. Normative data for arterial blood gas and electrolytes in anesthetized rats. Indian J Pharmacol. 2013 Jan-Feb; 45 (1): 103–104.
    Publication of the article «World of Medicine and Biology» №3(77), 2021 year, 194-198 pages, index UDK 616.15-008.7+616-008.9]:616-005.1:615.326:549.731.1-022.532
    DOI 10.26724/2079-8334-2021-3-77-194-198