English Українська
  • Main
  • Useful links
  • Information for Contributors
  • About
  • Editorial board

  • Article
    V. P. Zakharova, A. A. Balabai, E. M. Trembovetskaya, E. V. Rudenko, K. V. Rudenko, L. О. Stechenko

    MORPHOFUNCTIONAL BASIS OF THE FORMATION OF CARDIAC OUTPUT


    About the author: V. P. Zakharova, A. A. Balabai, E. M. Trembovetskaya, E. V. Rudenko, K. V. Rudenko, L. О. Stechenko
    Heading EXPERIMENTAL MEDICINE
    Type of article Scentific article
    Annotation The article is devoted to the study of the morphological basis of the formation of systolic blood ejection from the left ventricle into the systemic circulation. The myocardium is a continuous syncytium-like structure with multidirectional muscle fibers; however, different segments of the left ventricle during systole are allowing the myocardium to move along a certain trajectory in the absence of fulcrums. The mechanisms of myocardial movement in a certain direction remain unknown. The aim of our study was to study the morphological basis of the formation of systolic blood flow from the left ventricle into the great circle of blood circulation. Macroscopic, microscopic methods and speckle-tracking echocardiography were used in the study. The results of our study showed that the compact myocardium of the upper segments of the left ventricle of the heart is formed by connecting the strands of muscle fibers that change direction from “clockwise” to “counterclockwise”. The vector of movement of each segment of the myocardium depends on the direction of its muscle fibers and the sequence of contractions. The trabeculae contract first and are the fulcrum for compact myocardial cardiomyocytes, which determines the direction of movement of each segment of the left ventricular myocardium. Changes in myocardial architecture, as well as abnormal cardiomyocyte contractions, may lead to decreased stroke volume with symptoms of heart failure, which should be considered when making a diagnosis.
    Tags myocardium, left ventricle, morphology, speckle-tracking echocardiography, cardiac output
    Bibliography
    • Zaharova VP, Trembovetskaya EM, Savchuk TV, Batsak BV, Rudenko KV, Rudenko EV. Novyie aspekty stroeniya miokarda zheludochkov serdtsa. Sertse i sudini. 2014; 3: 35–43. [in Russian]
    • Obrezan AG, Baranov DZ. Deformatsiya miokarda u bolnyih hronicheskoy serdechnoy nedostatochnostyu. Kardiologiya. 2019; 59(8): 88–96. DOI: 10.18087/cardio.2019.8.2579 [in Russian]
    • Sohibnazarova VH, Saidova MA, Tereschenko SN. Primenenie novykh ekhokardiograficheskikh tehnologiy nedopplerovskogo izobrazheniya miokarda v dvumernom i trekhmernom rezhimakh u bolnykh HSN s sokhrannoy i snizhennoy fraktsiey vyibrosa levogo zheludochka. Evraziyskiy kardiologicheskiy zhurnal. 2017; 2: 42–47. [in Russian]
    • Trembovetskaya EM, Knyishov GV, Zaharova VP, Rudenko EV, Moroz MN. Morfologicheskie osnovyi dinamicheskikh kharakteristik miokarda levogo zheludochka serdtsa. Sertse і sudini. 2015; 3: 51–60. [in Russian]
    • Baehr A, Klymiuk N, Kupatt C. Evaluating Novel Targets of Ischemia Reperfusion Injury in Pig Models. Int. J. Mol. Sci. 2019; 20(19): 47–49. DOI: 10.3390/ijms20194749
    • Boyden PA, Dun W, Robinson RB. Cardiac Purkinje fibers and Arrhythmias; The GK Moe award Lecture 2015. Heart Rhythm. 2016; 13(5): 1172–1181. DOI: 10.1016/j.hrthm.2016.01.011
    • Buckberg GD, nanda NC, Nguen C, Kocica MJ. What is heart? Anatomy, Function, Pathophysiology, and Misconceptions. J. Cardiovasc. Dev. Dis. 2018; 5; 33. DOI: 10.3390/jcdd5020033
    • Carmeliet E. Conduction in cardiac tissue. Historical reflections. Physiol. Rep. 2019; 7 (1): 1–13. DOI: 10.14814/phy2.13860
    • Daae AS, Wigen MS, Fadnes S, løvstakken L, Støylen A. Intraventricular vector flow imaging with blood speckle tracking in adults: feasibility, normal physiology and mechanisms in healthy volunteers. Ultrasound in Medicine & Biology. 2021; 47(12): 3501–3513. DOI: 10.1016/j.ultrasmedbio.2021.08.021
    • Garsia-Bustos V, Sebastian R, Izquierdo M, Molina P, Chorro FJ, Ruiz-Sauri A. Aquantative structural and morphometric analysis of the Purkinje network and the Purkinje–myocardial junctions in pig hearts. J. Anat. 2017; 230: 664–678. DOI: 10.1111/joa.12594
    • Helke HL, Ezell PC, Duran-Struuck R, Swindle MM. Biology and diseases of swine. Laboratory Animal Medicine. 2015: 695–769. DOI:10.1016/B978-0-12-409527-4.00016-X
    • Maclver DH, Stephenson RS, Jensen B, Agger P, Sanchez-Quintana D, Jarvis JC et al. The end of the unique myocardial band: Part I. Anatomical considerations. European Journal of Cardio-Thoracic Surgery. 2018; 53: 112–119. DOI: 10.1093/ejcts/ezx290
    • Mora V, Roldan I, Romero E, Sauri A, Romero D et al. Myocardial Contraction during the Diastolic Isovolumetric Period: Analysis of Longitudinal Strain by Means of Speckle Tracking Echocardiography. J. Cardiovasc. Dev. Dis. 2018; 5; 41. DOI: 10.3390/jcdd5030041
    • 14. Sundström E, Jonnagiri R, Gutmark-Little I, Gutmark E, Critser P, Taylor MD, Tretter JT. Effects of Normal Variation in the Rotational Position of the Aortic Root on Hemodynamics and Tissue Biomechanics of the Thoracic Aorta. Cardiovasc. Eng. Technol. 2020; 11(1): 47–58. DOI: 10.1007/s13239-019-00441-2
    • 15. Trainini J, Lowenstein J, Beraudo M, Wernicke M, Trainini A, Labata VM, Carreras CF. Myocardial torsion and cardiac fulcrum. Morphologie. 2021; 105: 15–23.  DOI:10.1016/j.morpho.2020.06.010
    Publication of the article «World of Medicine and Biology» №1(79), 2022 year, 195-199 pages, index UDK 616.12.127-008.45
    DOI 10.26724/2079-8334-2022-1-79-195-199