English Українська
  • Main
  • Useful links
  • Information for Contributors
  • About
  • Editorial board

  • Article
    I. O. Melnychuk

    PLATELETS AMINO ACIDS PROFILE AND CARDIOMETABOLIC RISK FACTORS IN PATIENTS WITH CORONARY ARTERY DISEASE AND ATRIAL FIBRILLATION


    About the author: I. O. Melnychuk
    Heading CLINICAL MEDICINE
    Type of article Scentific article
    Annotation The aim: to found out connections between platelets amino acids profile and cardiometabolic risk factors in coronary artery disease patients with atrial fibrillation. 300 patients were divided into 3 groups: first (I) – 149 patients with coronary artery disease and without arrhythmias, second (II) – 123 patients with coronary artery disease and atrial fibrillation paroxysm and 28 patients in control group. In II group in comparison with I group were checked (P<0.05): increasing isoleucine (10.73 %), leucine (12.63 %) and decreasing threonine (23.05 %), serine (5.06 %), glycine (32.21 %), valine (30.83 %) levels in platelets amino acids profile; elevation of apolipoprotein B (29.91 %), C-reactive protein (40.93 %), interleucine-6 (22.93 %), trimethylamine (16.13 %) and trimethylamine-N-oxide (57.54 %) levels and fall of trimethylamine / trimethylamine-N-oxide ratio (26.16 %). Majority of correlations were found between glycine (total number = 12), threonine (total number = 6), glutamate (total number = 6), valine (total number = 6) and cardiometabolic risk factors. Platelets glycine correlated with age (r=-0.305), body mass index (r=-0.351), total cholesterol (r=-0.304), low density lipoprotein (r=-0.348), apolipoprotein A1 (r=0.373), apolipoprotein B (r=-0.347), interleucine-6 (r=-0.315), trimethylamine-N-oxide (r=-0.654), trimethylamine / trimethylamine-N-oxide ratio (r=0.688), prothrombin index (r=0.317), activated partial thromboplastin time (r=-0.365) and fibrinogen (r=-0.396), P<0.05.
    Tags coronary artery disease,atrial fibrillation,amino acids,blood platelets,cardiometabolic risk factors
    Bibliography
    • Bishop CA, Schulze MB, Klaus S, Weitkunat K. The branched-chain amino acids valine and leucine have differential effects on hepatic lipid metabolism. FASEB J. 2020 Jul;34(7):9727–9739. doi: 10.1096/fj.202000195R. Epub 2020 Jun 7. PMID: 32506644.
    • Faizi N, Alvi Y. Biostatistics Manual for Health Research. Elsevier; 2023.
    • Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021 Feb 1;42(5):373–498. doi: 10.1093/eurheartj/ehaa612.
    • Jiang H, Zhang L, Yang M, Li G, Ding C, Xin M, et al. Branched-chain amino acids promote thrombocytopoiesis by activating mTOR signaling. J Thromb Haemost. 2023 Nov;21(11):3224–3235. doi: 10.1016/j.jtha.2023.06.039. Epub 2023 Jul 18. PMID: 37473846.
    • Kamstrup PR. Lipoprotein(a) and Cardiovascular Disease. Clin Chem. 2021 Jan 8;67(1):154–166. doi:  10.1093/clinchem/hvaa247. PMID: 33236085.
    • Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020 Jan 14;41(3):407–477. doi: 10.1093/eurheartj/ehz425.
    • Li JJ, Liu HH, Li S. Landscape of cardiometabolic risk factors in Chinese population: a narrative review. Cardiovasc Diabetol. 2022 Jun 21;21(1):113. doi: 10.1186/s12933-022-01551-3.
    • Lizogub VG, Kramarova VN, Melnychuk IO. The role of gut microbiota changes in the pathogenesis of heart disease. Zaporizkiy medical journal. 2019;21(5 (116)):672–8. doi:10.14739/2310-1210.2019.5.179462
    • Roşca AE, Vlădăreanu AM, Mirica R, Anghel-Timaru CM, Mititelu A, Popescu BO, et al. Taurine and Its Derivatives: Analysis of the Inhibitory Effect on Platelet Function and Their Antithrombotic Potential. J Clin Med. 2022 Jan 27;11(3):666. doi:  10.3390/jcm11030666.
    • Shaposhnyk OA, Prykhodko NP, Savchenko LV, Shevchenko TI, Sorokina SI, Yakymyshyna LI, et al. Clinical and diagnostic aspects of managing patients with valvular heart disease. World of Medicine and Biology. 2022; 2(80): 178–183. doi:  10.26724/2079-8334-2022-2-80-178-183
    • Tang Q, Tan P, Ma N, Ma X. Physiological Functions of Threonine in Animals: Beyond Nutrition Metabolism. Nutrients. 2021 Jul 28;13(8):2592. doi: 10.3390/nu13082592.
    • Wu T, Wang M, Ning F, Zhou S, Hu X, Xin H, et al. Emerging role for branched-chain amino acids metabolism in fibrosis. Pharmacol Res. 2023 Jan;187:106604. doi: 10.1016/j.phrs.2022.106604.
    • Xu Y, Jiang H, Li L, Chen F, Liu Y, Zhou M, et al. Branched-Chain Amino Acid Catabolism Promotes Thrombosis Risk by Enhancing Tropomodulin-3 Propionylation in Platelets. Circulation. 2020 Jul 7;142(1):49–64. doi:  10.1161/CIRCULATIONAHA.119.043581.
    • Yang H, Zhang C, Turkez H, Uhlen M, Boren J, Mardinoglu A. Revisiting the role of serine metabolism in hepatic lipogenesis. Nat Metab. 2023 May;5(5):760–761. doi: 10.1038/s42255-023-00792-0.
    Publication of the article «World of Medicine and Biology» №4(86), 2023 year, 110-114 pages, index UDK 616.12-008.313.2
    DOI 10.26724/2079-8334-2023-4-86-110-114