РусскийEnglishУкраїнська
  • Main
  • Useful links
  • Information for Contributors
  • About
  • Editorial board

  • Article
    Pomohaybo V. M., Petrushov A. V.

    GENETIC COMMUNICATIONS IN SYSTEM “PARASITE-OWNER”


    About the author: Pomohaybo V. M., Petrushov A. V.
    Heading LITERATURE REVIEWS
    Type of article Review article
    Annotation Genetic communications (horizontal transfer of genes, lateral transfer of genes) consist of transfer by organism its genes to other organism which isn't his descendant. This phenomenon is possible not only between organisms of allied species, but also between organisms of different highest taxons and even kingdoms – bacteria and protozoa, bacteria and nematodes, mushrooms and insects, plants and mushrooms, protozoa, insects. The Horizontal Transfer of Genes (HTG) – the all-biological phenome-non and a source of fast and mass variability of organisms without mutations and recombinations. It is carried out in three ways: by means of vectors (virus-es, plasmids, mobile genetic elements), on condition of close physical contact (copulation, conjugation, symbiosis, commensalism, parasitism, transplanta-tion), and also by means of parasites couriers. HTG doesn't demand partners’ presence at the same time in a certain place, but close physical contact between them increases its probability. However the fact of movement of a certain gene won't provide its expression in a new genome yet. For this purpose it has to be integrated into a new genome, and its functioning has to answer features of a recipient organism. HTG is extremely widespread among procaryote. Ability of bacteria quickly use new living conditions and the easiness with which some their types gain resistance to the whole range of antibiotics, are possible only under condi-tion if these properties extend within species, but aren't generated by each line of bacteria independently. In the process of increase in sequenced genomes quantity of eucaryotes appears more and more data which testifies bout preva-lence of HTG among organisms of all levels of the organization, including mushrooms, plants, animal and even the human being. So far the most powerful proof of HTG implementation between certain types of organisms remains the DNA sequenation. Different organisms consid-erably differ according to the general maintenance of certain bases in DNA molecule, on features of use of different triplets for coding of the same amino acids, on frequencies of repetitions, etc. It gives the chance to identify poten-tially alien genes on their atypical nucleotide structure or on deviations in use of codons. However for strong evidence the molecular-genetic HTG data aren't enough. Results of a sequenation of genomes have to be confirmed with mor-phological, physiological, ecological and biogeographical researches. Parasites exist in organism of the owner or on it, trophic depend on it and therefore have long physical contact with it. This condition provides con-siderable opportunities for an exchange of genetic material between a parasite and the owner. However, mechanisms of this phenomenon in most cases re-main unknown though it is revealed that DNA is more resistant to destruction, than was considered earlier. The part of it is capable to pass safely through gastrointestinal tract of an animal and on the blood course to reach practically any tissue of a body, including gametic. In system "parasite – owner" genetic communications are carried out in both directions. In this case the acquired genes can provide to recipient adapta-tion advantages – strengthening of virulence, ability to neutralize toxins, to re-sist to immune system of the owner, to utilize more successfully structures of his organism, etc. The majority of these properties the parasitizing eucaryotes get from the simbiont – bacteria and mushrooms. Sometimes the genes ac-quired by owner from parasite provide him incensement of the protective op-portunities. In systems "parasite – owner" evolves not each element in itself, but all system as a unit. The subsequent studying of these systems will provide the best understanding of processes of a genomic coevolution and parasitic epide-miology.
    Tags genetic communication, horizontal gene transfer, parasite-lifegiver, vectors, physical contact, coevolution, parasitic epidemiology
    Bibliography
    • Aravind L. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles / L. È. Aravind, R. L. Tatusov, Y. I. Wolf [et al.] // Trends Genet. – 1998. – Vol. 14. – No. 11. – P. 442-444.
    • Andersson J. O. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution / J. O. Andersson, A. M. Sjogren, D. S. Horner [et al.] // BMC Genomics. – 2007. – No. 8:51. – 25 p.
    • Anderson M. T. Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen / M. T. Anderson, H. S. Seifert // MBio. – 2011. – Vol. 2. – Iss. 1. – 5 p.
    • Boucher Y. Lateral gene transfer and the origin of prokaryotic groups / Y. Boucher, Ch. J. Douady, R. Th. Papke [et al.] // Ann. Rev. Genet. – 2003. – Vol. 37. – P. 283-328.
    • Boschetti C. Biochemical diversification through foreign gene expression in bdelloid rotifers / Ch. Boschetti, A. Carr, A. Crisp [et al.] // PLoS Genet. – 2012. – Vol. 8. – Iss. 11 – 12 p.
    • Canchaya C. Phage as agents of lateral gene transfer / C. Canchaya, Gh. Fournous, S. Chibani-Chennoufi [et al.] // Curr. Opin. Microbiol, – 2003. – Vol. 6. – No. 4. – P. 417-424.
    • Chénais B. Vectors for gene therapy: A place for DNA transposon / B. Chénais // Open J. Genet.. – 2013. – Vol. 3. – No. 2A. – 11 p.
    • Dhar A. Alu elements in a Plasmodium vivax antigen gene / A. Dhar, S. Gupta, Y. D. Sharma // FEBS Letters. – 1998. – Vol. 423. – No. 2. – P. 193-197.
    • Davison J. Genetic exchange between bacteria in the environment / J. Davison // Plasmid. – 1999. – Vol. 42. – Iss. 2. – P. 73-91.
    • De Koning A.P. Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis / A.P. de Koning, F.S.L. Brinkman, S.J.M. Jones [et al.] // Mol. Biol. Evol. – 2000. – Vol. 17. – No. 11. – P. 1769-1773.
    • De Boer J. G. Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids / J.G de Boer, R. Yazawa, W.S. Davidson [et al.] // BMC Genomics. – 2007. – No. 8:422. – 10 p.
    • Danchin E. G. J. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes / E. G. J. Danchin, M.-N. Rosso, P. Vieira [et al.] // Proc. Nat. Acad. Sci. USA. – 2010. – Vol. 107. – No. 41. – P. 17651-17656.
    • Diao Y. Next-generation sequencing reveals recent horizontal transfer of a DNA transposon between divergent mosquitoes / Y. Diao, Y. Qi, Y. Ma [et al.] // PLoS ONE. – 2011. – Vol. 6. – Iss. 2. – 8 p.
    • Di Matteo M. Recent developments in transposon-mediated gene therapy / M. Di Matteo, E. Belay, M. K. Chuah [et al.] // Exp. Opin. Biol. Therapy. – 2012. – Vol. 12. – No. 7 . – P. 841-858.
    • DeWoody J. A. Of contigs and quagmires: next-gen sequencing pitfalls associated with transcriptomic studies / J. A. DeWoody, K. C. Abts, A.L. Fahey [et al.] // Mol. Ecol. Res. – 2013. – Vol. 13. – No. 4. – P. 551-558.
    • Finan T. M. Evolving insights: Symbiosis islands and horizontal gene transfer / T. M. Finan // J. Bacteriol. – 2002. – Vol. 184. – No. 11. – P. 2855-2856.
    • Groisman E. A. Horizontal transfer of a phosphatase gene as evidence or the mosaic structure of the Salmonella genome / E. A.Groisman, M. H. Saier,Jr. H. Ochman // EMBO J. – 1992. – Vol. 11. – No. 4. – P. 1309-1316.
    • Gerolami R. Gene transfer to hepatocellular carcinoma: Transduction efficacy and transgene expression kinetics by using retroviral and lentiviral vectors / R. Gerolami, R. Uch, F. Jordier [et al.] // Canc. Gene Ther. – 2000. – Vol. 7. – No. 9. – P. 1286-1292.
    • Gogarten J. P. Prokaryotic evolution in light of gene transfer / J. P. Gogarten, W. F. Doolittle, J. G. Lawrence // Mol. Biol. Evol. – 2002. – Vol.19. – No. 12 – P. 2226-2238.
    • Gogarten J. P. Gene transfer: gene swapping craze dispatch reaches eukaryotes / J. P. Gogarten // Current Biology – 2003. – Vol. 13. – No. 2. – P. R53-R54.
    • Guven H. Efficient gene transfer into primary human natural killer cells by retroviral transduction / H. Guven, K.V. Konstantinidis, E. Alici [et al.] // Exper. Hematol. – 2005. – Vol. 33. No. 11. – P. 1320-1328.
    • Gladyshev E. A. Massive horizontal gene transfer in bdelloid rotifers / E. A. Gladyshev, M. Meselson, I. R. Arkhipova // Science. – 2008. – Vol. 320. – No. 5880. – P. 1210-1213.
    • Gilbert C. A role for host-parasite interactions in the horizontal transfer of transposons across phyla / C. Gilbert, S. Schaack, J.K. Pace [et al.] // Nature. – 2010. – Vol. 464. – No. 7293. – P. 1347-1350.
    • Houck M. A. Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis / M. A. Houck, J. B. Clark, K. R. Peterson [et al.] // Science. – 1991. – Vol. 253. – No. 5024. – P. 1125-1128.
    • Haupt S. Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa / S. Haupt, K. J. Oparka, N. Sauer [et al.] // J. Exp. Bot. – 2001. – Vol. 52. – No. 354. – P. 173-177.
    • Hotopp J. C. D. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes / J. C. D. Hotopp, M. E. Clark, D. C. Oliveira [et al.] // Science. – 2007. – Vol. 317. – No. 5845. – P. 1753-1756.
    • Hecht M. M. Inheritance of DNA transferred from American trypanosomes to human hosts / M. M. Hecht, N. Nitz, P. F. Araujo [et al.] // PLoS ONE. – 2010. – Vol. 5. – Iss. 2. – 15 p.
    • Hale M. C. Discovery and evaluation of candidate sex-determining genes and xenobiotics in the gonads of lake sturgeon (Acipenser fulvescens) / M. C. Hale, J. R. Jackson, J. A. DeWoody // Genetica. – 2010. – Vol. 138. – No. 7. – P. 745-756.
    • Ives A. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis / A. Ives, C. Ronet, F. Prevel [et al.] // Science. – 2011. – Vol. 331. – No. 6018. – P. 775-778.
    • iang S. C. Gene transfer by transduction in the marine environment / S. C. Jiang, J. H. Paul // Appl. Environ. Microbiol. – 1998. – Vol. 64. – No. 8. – P. 2780-2787.
    • Jerusalinsky D. Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases / D. Jerusalinsky, M. V. Baez, A. L. Epstein // J. Physiol. – Paris. – 2012. – Vol. 106. – No. 1-2. – P. 2-11.
    • Karlin S. Comparative DNA analysis across diverse genomes / S. Karlin, A. M. Campbell, J. Mrázek // Ann. Rev. Genet. – 1998. – Vol. 32. – P. 185-225.
    • Kroer N. Effect of root exudates and bacterial metabolic activity on conjugal gene transfer in the rhizosphere of a marsh plant / N. Kroer, T. Barkay, S. Sørensen [et al.] // FEMS Microbiol. Ecol. – 1998. – Vol. 25. – No. 4. – P. 375-384.
    • Katinka M. D. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi / M. D. Katinka, S. Duprat, E. Cornillot [et al.] // Nature. – 2001. – Vol. 414. – No. 6862. – P. 450-453.
    • Kelli W. J. Perspectives on plasmid-based gene therapy: hallenges for the product and the process / W. J. Kelli // Biotechnol. Appl. Biochem. – 2003. – Vol. 37. – No. 3. – P. 219-223.
    • Kuraku S. Horizontal transfers of Tc1 elements between teleost fishes and their vertebrate parasites, lampreys / S. Kuraku, H. Qiu, A. Meyer // Genome Biol. Evol. – 2012. – Vol. 4. – No. 8. – P. 817-824.
    • Kim G. Genomic-scale exchange of mRNA between a parasitic plant and its hosts / G. Kim, M. L. LeBlanc, E. K. Wafula [et al.] // Science. – 2014. – Vol. 345, No. 6198. – P. 808-811.
    • Lawrence J. G. Amelioration of bacterial genomes: rates of change and exchange / J. G. Lawrence, H. Ochman // J. Mol. Evol. – 1997. – Vol. 44. – P. 383-397.
    • Lawrence J. G. Molecular archaeology of the Escherichia coli genome / J. G. Lawrence, H. Ochman // Proc. Nat. Acad. Sci. USA. – 1998. – Vol. 95. – No. 16. – P. 9413-9417.
    • Laha T. The bandit, a new DNA transposon from a hookworm-possible horizontal genetic transfer between host and parasite / Th. Laha, A. Loukas, S. Wattanasatitarpa [et al.] // PLoS Negl. Trop. Dis. – 2007. – Vol. 1. – No. 1. – 11 p.
    • Loreto E. L. S. Revisiting horizontal transfer of transposable elements in Drosophila / E.L.S. Loreto1, C.M.A. Carareto, P. Capy // Heredity. – 2008. – Vol. 100. – No. 6. – P. 545-554.
    • Liu H. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes / H. Liu, Y. Fu, D. Jiang [et al.] // J. Virol. – 2010. – Vol. 84. – No. 22. – P. 11876-11887.
    • Mallet L. V. Whole genome evaluation of horizontal transfers in the pathogenic fungus Aspergillus fumigatus / L.V Mallet1, J. Becq, P. Deschavanne // BMC Genomics. – 2010. – No. 11,171. – 13 p.
    • Muto A. The guanine and cytosine content of genomic DNA and bacterial evolution / A. Muto, S. Osawa // Proc. Nat. Acad. Sci. USA. – 1987. – Vol. 84. – No. 1. – P. 166-169.
    • Mayorov V. I. B2 elements present in the human genome / V. I. Mayorov, I. B. Rogozin, E. A. Elisaphenko [et al.] // Mammal. Genome. – 2000. – Vol. 11. – No. 2. – P. 177-179.
    • Mower J. P. Gene transfer from parasitic to host plants / J. P. Mower, S. Stefanović, G. J. Young [et al.] // Nature. – 2004. – Vol. 432. – No. 7014. – P. 165-166.
    • Melamed P. Evidence for lateral gene transfer from salmonids to two Schistosome species / Ph. Melamed, K. L. Chong, M. V. Johansen // Nat. Genet. – 2005. – Vol. 36. – No. 8. – P. 786-787.
    • Morales M. E. piggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni / M.E. Morales, V.H. Mann, K.J. Kines [et al.] // FASEB J. – 2007. – Vol. 21. – No. 13. – P. 3479-3489.
    • Moliner C. Evidence of horizontal gene transfer between amoeba and bacteria / C. Moliner, P.-E. Fournier, D. Raoult // Clinic. Microbiol. Infect. – 2009. – Vol. 15. – Suppl. 2. – P.178-180.
    • McNutty S. N. Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer / S. N. McNulty, J. M. Foster, M. Mitreva [et al.] // PLoS ONE. – 2010. – Vol. 5. – 9 p.
    • Moran N. A. Lateral transfer of genes from fungi underlies carotenoid production in aphids / N. A. Moran, T. Jarvik // Science. – 2010. – Vol. 328. – No. 5978. P. 624-627.
    • Mayer W. E. Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover / W. E Mayer, L. N. Schuster, G. Bartelmes [et al.] // BMC Evol. Biol. – 2011. – No. 11:13. -10 p.
    • McGinty S. E. Horizontal gene transfer and the evolution of bacterial cooperation / S. E. McGinty, D. J. Rankin, S. P. Brown // Evolution. – 2011. – Vol. 65. – No. 1. – P. 21-32.
    • Mehrabi R. Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range / R. Mehrabi, A. H. Bahkali, K. A. Abd-Elsalam [et al.] // FEMS Microbiol. Rev. – 2011. – Vol. 35. – No. 3. – P. 542-554.
    • Nelson K. E. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima / K. E. Nelson, R. A. Clayton, S. R. Gill [et al.] // Nature. – 1999. – Vol. 399. – No. 6734. – P. 323-329.
    • Ochiai K. Studies on the inheritance of drug resistance between Shigella strains and Escherichia coli strains / K. Ochiai, T. Yamanaka, K. Kimura [et al.] // Nihon Iji Shimpo. – 1959. – No. 1861. – P. 34-46.
    • Pritham E. J. Transposable elements and factors influencing their success in eukaryotes / E. J. Pitham // J. Heredity. – 2009. – Vol. 100. – No. 5. – P. 648-655.
    • Pierce S. K. Transcriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic sea slug, Elysia chlorotica / S. K. Pierce, X. Fang, J. A. Schwartz [et al.] // Mol. Biol. Evol. – 2012. – Vol. 29. – No. 6. – P. 1545-1556.
    • Rumpho M. E. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica / M. E. Rumphoa, J. M. Worful, J. Lee [et al.] // Proc. Natl. Acad. Sci. U.S.A. – 2008. – Vol. 105. – No. P. 17867-17871.
    • Rolland Th. Insertion of horizontally transferred genes within conserved syntenic regions of yeast genomes / Th. Rolland, C. Neuveglise, Ch. Sacerdot [et al.] // PLoS ONE. – 2009. – Vol .4. – 14 p.
    • Rödelsperger C. Computational archaeology of the Pristionchus pacificus genome reveals evidence of horizontal gene transfers from insects / C. Rödelsperger, R. J. Sommer // BMC Evol. Biol. – 2011. – No. 11:239. – 11 p.
    • Richards T. A. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes / T. A. Richards, D. M. Soanes, M. D. M. Jones [et al.] // Proc. Nat. Acad. Sci. USA. – 2011. – Vol. 108. – No. 37 – P. 15258-15263.
    • Sueoka N. On the genetic basis of variation and heterogeneity of DNA base composition / N. Sueoka // Proc. Nat. Acad. Sci. USA. – 1962. – Vol. 48. – No. 4. – P. 582-592.
    • Schubbert R. Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA / R. Schubbert, D. Renz, B. Schmitz [et al.] // Proc. Nat. Acad. Sci. USA. – 1997. – Vol. 94. – No. 3. – P. 961-966.
    • Salzet M. Molecular crosstalk in host-parasite relationships: schistosome- and leech-host interactions / M. Salzet, A. Capron, G. B. Stefano // Parasitol. Today. – 2000. – Vol. 16. – No. 12. – P. 536-540.
    • Stroun M. Alu repeat sequences are present in increased proportions compared to a unique gene in plasma/serum DNA / M. Stroun, J. Lyautey, Ch. Lederrey [et al.] // Annals N.Y. Acad. Sci. – 2001. – Vol. 945. – P. 258-264.
    • Salzberg S. L. Microbial genes in the human genome: lateral transfer or gene loss? / S. L. Salzberg, O. White, J. Peterson [et al.] // Science. – 2001. – Vol. 292. – Vol. 5523. – P. 1903-1906.
    • Striepen B. Gene transfer in the evolution of parasite nucleotide biosynthesis / B. Striepen, A. J. P. Pruijssers, J. Huang [et al.] // Proc. Nat. Acad. Sci. USA. – 2004. – Vol. 101. – No. 9. – P. 3154-3159.
    • Sørensen S. J. Studiing plasmid horizontal transfer in situ; a critical review / S. J. Sørensen, M. Bailey, L.H. Hansen [et al.] // Nature Rev. Microbiol. – 2005. – Vol. 3. – No. 9. – P. 700-710.
    • Stegemann S. Exchange of genetic material between cells in plant tissue grafts / S. Stegemann, R. Bock // Science. – 2009. – Vol. 324. – P. 649-651.
    • Slot J. C. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi / J. C. Slot, A. Rokas // Curr. Biol. – 2011. – Vol. 21. – No. 2. – P. 134-139.
    • Stegemann S. Horizontal transfer of chloroplast genomes between plant species / S. Stegemann, M. Keuthe, S. Greiner [et al.] // Proc. Nat. Acad. Sci. USA. – 2012. – Vol. 109. – No. 7. – P. 2434-2438.
    • Teixeira A. R. L. Possible integration of Trypanosoma cruzi kDNA minicircles into the host cell genome by infection / A. R. L. Teixeira, E. R. Argafiaraz, L. H. Freitas Jr. [et al.] // Mutat. Res. – 1994. – Vol. 305. – No. 2. – 197–209.
    • Thomas Ch. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria / Ch. M. Thomas, K. M. Nielsen // Nature Rev. Microbiol. – 2005. – Vol. 3. – No. 9. – P. 711-721.
    • Taberlet P. Environmental DNA / P. Taberlet, E. Coissac, M. Hajibabaei [et al.] // Mol. Ecol. – 2012. – Vol. 21. – No. 8. – P. 1789-1793.
    • Thyssen G. Cell-to-cell movement of plastids in plants / G. Thyssen, Z. Svab, P. Maliga // Proc. Nat. Acad. Sci. USA. – 2012. – Vol. 109. – No. 7. – P. 2439-2443.
    • Uh M. Transgene constructs in coho salmon (Oncorhynchus kisutch) are repeated in a head-to-tail fashion and can be integrated adjacent to horizontally-transmitted parasite DNA / M. Uh, J. Khattra, R.H. Devlin // Transgenic Res. – 2006. – Vol. 15. – No. 6. – P. 711-727.
    • Van Valen L. A new evolutionary law / L. Van Valen // Evol. Theory – 1976. – Vol. 1. – P. 1-30.
    • Vanderkwaak T. J. An advanced generation of adenoviral vectors selectively enhances gene transfer for ovarian cancer gene therapy approaches / T. J. Vanderkwaak, M. Wang, J. Gómez-Navarro [et al.] // Gynecol. Oncol. – 1999. – Vol. 74. – No. 2. – P. 227-234.
    • Van Gaal E. V. B. Plasmid engineering for controlled and sustained gene expression for nonviral gene therapy / E. V. B. van Gaal, W. E. Hennink, D. J. A. Crommelin [et al.] // Pharmac. Res. – 2006. – Vol. 23. – No. 6. – P. 1053-1074.
    • Wang A. L. Viruses of parasitic protozoa / A. L. Wang, C. C. Wang // Parasitol. Today. – 1991. – Vol. 7. – No. 4. – P. 76-80.
    • Wlodarczyk M. Conjugal transfer of plasmid and chromosomal markers between strains of Thiobacillus versutus / M. Wlodarczyk, E. Piechucka // Curr. Microbiol. – 1995. – Vol. 30. – No. 4. – P. 185-191.
    • Woolfit M. An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis / M. Woolfit, I. Iturbe-Ormaetxe, E. A. McGraw [et al.] // Mol. Biol. Evol. – 2009. – Vol. 26. – No. 2. – P. 367-374.
    • Wijayawardena B. K. Hosts, parasites, and horizontal gene transfer / B. K. Wijayawardena, D. J. Minchella, J. A. DeWoody // Trends Parasitol. – 2013. – Vol. 29. – No. 7. – P. 329-338.
    • Yoshida S. Horizontal gene transfer by the parasitic plant Striga hermonthica / S. Yoshida, Sh. Maruyama, H. Nozaki [et al.] // Science. – 2010. – Vol. 328. – No. 5982. – P. 1128-1128.
    • Zhu B. Horizontal gene transfer in silkworm, Bombyx mori / B. Zhu, M.-M. Lou, G.-L. Xie [et al.] // BMC Genomics. – 2011. – No. 12, Vol. 248. – 9 p.
    • Zhao L. Interspecific communication between pinewood nematode, its insect vector, and associated microbes / L. Zhao, M. Mota, P. Vieira Rebecca [et al.] // Trends Parasitol. – 2014. – Vol. 30. – No. 6. – P. 299-308.
    Publication of the article «World of Medicine and Biology» №3(51) 1 part 2015 year, 143-150 pages, index UDK 613