English Українська
  • Main
  • Useful links
  • Information for Contributors
  • About
  • Editorial board

  • Article
    T. A. Voroshilova, V. I. Shepitko, Ye. V. Stetsuk, O. Ye. Akimov, G. S. Puzyryov

    CHANGES IN NITRIC OXIDE PRODUCTION AND DEVELOPMENT OF OXIDATIVE STRESS IN RATS HEART DURING PROLONGED TRIPTORELIN-INDUCED CENTRAL DEPRIVATION OF LUTEINIZING HORMONE SYNTHESIS


    About the author: T. A. Voroshilova, V. I. Shepitko, Ye. V. Stetsuk, O. Ye. Akimov, G. S. Puzyryov
    Heading EXPERIMENTAL MEDICINE
    Type of article Scentific article
    Annotation Disruption of synthesis of luteinizing hormone may lead to testosterone deficiency. And testosterone deficiency leads to increased risk of cardiovascular mortality and aggravates coronary artery disease. On the 180th day we observed the biggest shift towards M1 phenotype. This event coincided with the increased SAR production. Since M1 polarized tissue macrophages have the ability to produce reactive oxygen and nitrogen species we can speculate that highest lipid peroxidation observed in our study on the 180th day of the experiment is connected with changes in macrophage polarization towards predominance of M1 phenotype. Therefore, we can conclude, that decrease in oxidative damage to the heart on the 30th day of the experiment can be connected to lower concentration of luteinizing hormone. On later terms of the experiment activation of xanthine oxidase/uric acid signaling due to the lack of testosterone causes the development of oxidative stress. Decrease in activity of antioxidant enzymes during peak production of SAR (180th day) can be explained by exhaustion of these enzymatic systems.
    Tags nitric oxide, oxidative stress, heart, rats, luteinizing hormone, triptorelin
    Bibliography
    • Abdel-Aziz AM, Gamal El-Tahawy NF, Salah Abdel Haleem MA, Mohammed MM, Ali AI, Ibrahim YF. Amelioration of testosterone-induced benign prostatic hyperplasia using febuxostat in rats: The role of VEGF/TGFβ and iNOS/COX-2. Eur J Pharmacol. 2020 Dec 15; 889:173631. doi: 10.1016/j.ejphar.2020.173631.
    • Akhigbe RE, Hamed MA, Odetayo AF, Akhigbe TM, Ajayi AF, Ajibogun FAH. Omega-3 fatty acid rescues ischaemia/perfusion-induced testicular and sperm damage via modulation of lactate transport and xanthine oxidase/uric acid signaling. Biomed Pharmacother. 2021 Oct; 142:111975. doi: 10.1016/j.biopha.2021.111975.
    • Akseh S, Karimi MA, Safaie N, Valizadeh A, Rahmanpour D, Pezeshkian M, Nouri M, Faridvand Y, Jodati A. The serum levels of testosterone in coronary artery disease patients; relation to NO, eNOS, endothelin-1, and disease severity. Horm Mol Biol Clin Investig. 2021 Sep 9. doi: 10.1515/hmbci-2021-0026.
    • Babcock MC, DuBose LE, Witten TL, Stauffer BL, Hildreth KL, Schwartz RS, Kohrt WM, Moreau KL. Oxidative Stress and Inflammation Are Associated With Age-Related Endothelial Dysfunction in Men With Low Testosterone. J Clin Endocrinol Metab. 2022 Jan 18; 107(2):e500–e514. doi: 10.1210/clinem/dgab715.
    • Barbonetti A, D'Andrea S, Francavilla S. Testosterone replacement therapy. Andrology. 2020 Nov; 8(6):1551-1566. doi: 10.1111/andr.12774.
    • Botté MC, Lerrant Y, Lozach A, Bérault A, Counis R, Kottler ML. LH down-regulates gonadotropin-releasing hormone (GnRH) receptor, but not GnRH, mRNA levels in the rat testis. J Endocrinol. 1999; 162(3): 409–415. doi:10.1677/joe.0.1620409.
    • Fernandes Corrêa RA, Ribeiro Júnior RF, Mendes SBO, Dos Santos PM, da Silva MVA, Silva DF, Biral IP, de Batista PR, Vassallo DV, Bittencourt AS, Stefanon I, Fernandes AA. Testosterone deficiency reduces the effects of late cardiac remodeling after acute myocardial infarction in rats. PLoS One. 2019 Mar 21; 14(3):e0213351. doi: 10.1371/journal.pone.0213351.
    • Kirby M, Hackett G, Ramachandran S. Testosterone and the Heart. Eur Cardiol. 2019 Jul 11;14(2):103–110. doi: 10.15420/ecr.2019.13.1.
    • Meng X, Li X, Xu X, Li P, Chen Y, Fu X, Xu X. Elevated luteinizing hormone contributes to atherosclerosis formation by inhibiting nitric oxide synthesis via PI3K/Akt pathway. Vascul Pharmacol. 2019 Oct;121:106582. doi: 10.1016/j.vph.2019.106582.
    • Ren X, Fu X, Zhang X, Chen S, Huang S, Yao L, Liu G. Testosterone regulates 3T3-L1 pre-adipocyte differentiation and epididymal fat accumulation in mice through modulating macrophage polarization. Biochem Pharmacol. 2017 Sep 15; 140:73–88. doi: 10.1016/j.bcp.2017.05.022.
    • Ribeiro Júnior RF, Ronconi KS, Jesus ICG, Almeida PWM, Forechi L, Vassallo DV Testosterone deficiency prevents left ventricular contractility dysfunction after myocardial infarction. Mol Cell Endocrinol. 2018 Jan 15; 460:14–23. doi: 10.1016/j.mce.2017.06.011.
    • Stetsuk YeV, Kostenko VO, Shepitko VI, Goltsev AN. Influence of the 30-days central deprivation of testosterone synthesis on the morphological and functional features of rat testicular interstitial endocrinocytes and sustentocytes. World of Medicine and Biology. 2019; 4(70): 22833. doi: 10.26724/2079-8334-2019-4-70-228-233.
    • Yang S, Yuan HQ, Hao YM, Ren Z, Qu SL, Liu LS, Wei DH, Tang ZH, Zhang JF, Jiang ZS. Macrophage polarization in atherosclerosis. Clin Chim Acta. 2020 Feb; 501:142–146. doi: 10.1016/j.cca.2019.10.034.
    • Yelinska AM, Akimov OYe, Kostenko VO. Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response. Ukr. Biochem. J. 2019; 91(1): 80–85. doi: 10.15407/ubj91.01.080.
    • Wang X, Huang L, Jiang S, Cheng K, Wang D, Luo Q, Wu X, Zhu L. Testosterone attenuates pulmonary epithelial inflammation in male rats of COPD model through preventing NRF1-derived NF-κB signaling. J Mol Cell Biol. 2021 May 7; 13(2):128–140. doi: 10.1093/jmcb/mjaa079.
    Publication of the article «World of Medicine and Biology» №1(79), 2022 year, 179-183 pages, index UDK [616.12:599.323.4]:612.08
    DOI 10.26724/2079-8334-2022-1-79-179-183