English Українська
  • Main
  • Useful links
  • Information for Contributors
  • About
  • Editorial board

  • Article
    M. F. Amirova, E. E. Huseynova, N. V. Melikova, F. I. Mammаdova, U. H. Azizova, S. R. Guliyeva

    BIOLOGICALLY SUBSTANTIATED, SAFE, AND CORRECTIVE REMEDIES FOR SARS-COV-2 REGIMEN


    About the author: M. F. Amirova, E. E. Huseynova, N. V. Melikova, F. I. Mammаdova, U. H. Azizova, S. R. Guliyeva
    Heading REVIEWS
    Type of article Scentific article
    Annotation The paper seeks to find a novel effective treatment way for Severe Acute Respiratory Syndrome COVID-2 (SARS-CoV-2) without harm to the organism in general. Taking into account the information on the mechanism of of SARS-CoV-2 development, during treatment, it is advisable to pay attention to inhibition of viral replication; reduction hypoxia; elimination drug poisoning and toxic, allergic consequences; add antioxidant therapy to prevent formation of reactive oxygen species (ROS) at recovery phase and hook up anti-inflammatory therapy. This goal could be achieved by enhancing antiviral defense, administering antioxidants, and activating antioxidant enzymes according to their action mechanisms and therapeutic implications. For example, using superoxide dismutase mimics metalloporphyrins, metallocorroles, Mn biliverdins, Mn cyclic polyamines, Mn salens, metal oxides/salts and inducers of antioxidant protection. It is also possible to increase the antioxidant enzymes genes expression or the activity of the enzyme itself. Patients taking antibiotics for SARS-CoV-2 were more susceptible to exacerbations due to opportunistic infections, so alternatives to antibiotics with high efficacy and well-absorbed antioxidant properties are more appropriate. In this regard, vitamin C, N-acetylcysteine, and glycine, as well as melatonin, quercetin, astaxanthin, glutathione, fat-soluble vitamins, polyphenols, unsaturated fatty acids, and a number of other substances with high anti-inflammatory effects exhibit positive effect.
    Tags antioxidants,antiviral activity,cytokine storm,inflammation,oxidative stress,SARS-CoV-2,vitamins
    Bibliography
    • Amirova, MF, Azizova, Gİ. SARS-CoV-2 Virus Transmission Mechanism in the Human Body. Pakistan journal of biochemistry and molecular biology. 2021;4(1-2): 14–20.
    • Avdonin PP, Rybakova EY, Trufanov SK, Avdonin PV. SARS-CoV-2 Receptors and Their Involvement in Cell Infection. Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2023;17(1):1-11. doi: 10.1134/S1990747822060034.
    • Bagheri Hosseinabadi M, Khanjani N, Norouzi P, Faghihi-Zarandi A, Darban-Sarokhalil D, Khoramrooz SS, et al. The Effects of Antioxidant Vitamins on Proinflammatory Cytokines and Some Biochemical Parameters of Power Plant Workers: A Double-Blind Randomized Controlled Clinical Trial. Bioelectromagnetics. 2021 Jan;42(1):18-26. doi: 10.1002/bem.22294.
    • Buckley LF, Wohlford GF, Ting C. Role for Anti-Cytokine Therapies in Severe Coronavirus Disease 2020. Crit Care Explor. 2020;2(8):e0178. Published 2020 Aug 10. doi:10.1097/CCE.0000000000000178.
    • Carcaterra M, Caruso C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physio-pathological theory. Med Hypotheses. 2021 Jan;146:110412.
    • Chaolin H, Yeming W, Xingwang L, Lili R, Jianping Z, Yi H et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020; 395(10223):497 – 5061.
    • Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023 May 10;11:1158198. doi:  10.3389/fchem.2023.1158198.
    • Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62-75.
    • Dabholkar N, Gorantla S, Dubey SK, Alexander A, Taliyan R, Singhvi G. Repurposing methylene blue in the management of COVID-19: Mechanistic aspects and clinical investigations. Biomed Pharmacother. 2021 Oct;142:112023. doi:  10.1016/j.biopha.2021.112023.
    • DE Flora S, Balansky R, LA Maestra S. Antioxidants and COVID-19. J Prev Med Hyg. 2021 Jun 5;62(1 Suppl 3):E34-E45. doi: 10.15167/2421-4248/jpmh2021.62.1S3.1895.
    • De Melo AF, Homem-de-Mello M. High-dose intravenous vitamin C may help in cytokine storm in severe SARS-CoV-2 infection. Crit Care. 2020;24(1):500. Published 2020 Aug 13. doi:10.1186/s13054-020-03228-3.
    • Forcados GE, Muhammad A, Oladipo OO. Metabolic Implications of Oxidative Stress and Inflammatory Process in SARS-CoV-2 Pathogenesis: Therapeutic Potential of Natural Antioxidants REVIEW article. Front. Cell. Infect. Microbiol., 26 May 2021. https://doi.org/10.3389/fcimb.2021.654813.
    • Gasparello J, D'Aversa E, Papi C, Gambari L, Grigolo B, Borgatti M, et al. Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein. Phytomedicine. 2021 Jul;87:153583. doi: 10.1016/j.phymed.2021.153583.
    • Hiroyuki N, Masaaki M. Neurobiology of COVID-19-Associated Psychosis/Schizophrenia: Implication of Epidermal Growth Factor Receptor Signaling. Neuropsychopharmacology Reports. 2025; 45(1): e12520.
    • Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020;257:118102.
    • Kabekkodu Sh, Chakrabarty S, Jayaram P, Mallya S, Thangaraj K, Singh KK, et al.Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion. 2023; 69:43-56,ISSN 1567-7249. https://doi.org/10.1016/j.mito.2023.01.005.
    • Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens. 2024; 13(2):164. https://doi.org/10.3390/pathogens13020164.
    • Liu DX, Liang, JQ, Fung, TS Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). Encyclopedia of Virology, 2021: 428–440. https://doi.org/10.1016/B978-0-12-809633-8.21501-X.
    • Mathieu E , Bernard AS , Ching HYV , Somogyi A , Medjoubi K , Fores JR , et al. Anti-inflammatory activity of superoxide dismutase mimics functionalized with cell-penetrating peptides. Dalton Trans. 2020 Feb 21;49(7):2323-2330. doi:  10.1039/c9dt04619d.
    • Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2021;21(1):103-115. https://doi.org/10.3389/fgene.2021.622271.
    • Muhammad JS, ElGhazali G, Shafarin J, Mohammad MG, Abu-Qiyas A, Hamad M. SARS-CoV-2-induced hypomethylation of the ferritin heavy chain (FTH1) gene underlies serum hyperferritinemia in severe COVID-19 patients. Biochem Biophys Res Commun. 2022 Nov 26;631:138-145. doi: 10.1016/j.bbrc.2022.09.083.
    • Muhammad JS, Saheb Sharif-Askari N, Cui ZG, Hamad M, Halwani R. SARS-CoV-2 Infection-Induced Promoter Hypomethylation as an Epigenetic Modulator of Heat Shock Protein A1L (HSPA1L) Gene. Front Genet. 2021 Feb 19;12:622271. doi: 10.3389/fgene.2021.622271.
    • Nepogodiev HA, Glasbey D, Li JC, Gujjuri OM, Morton RR, Mantoglu DG. Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study. 2020. The Lancet, 396 (10243), pp. 27-38. doi: 10.1016/S0140-6736(20)31182-X.
    • Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020 Jul 13;24(1):422. doi: 10.1186/s13054-020-03120-0.
    • Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, et al. Autophagy, aging, and age-related neurodegeneration.  Neuron. 2025 Jan 8;113(1):29-48. doi: 10.1016/j.neuron.2024.09.015.
    • Perreau M, Suffiotti M, Marques-Vidal P. The cytokines HGF and CXCL13 predict the severity and the mortality in COVID-19 patients. Nat Commun 12, 4888 (2021). https://doi.org/10.1038/s41467-021-25191-5.
    • Saeedi-Boroujeni A, Mahmoudian-Sani MR. Anti-inflammatory potential of Quercetin in COVID-19 treatment. J Inflamm 18, 3 (2021). https://doi.org/10.1186/s12950-021-00268-6.
    • Şehirli AÖ, Aksoy U, Koca-Ünsal RB, Sayıner S. Role of NLRP3 inflammasome in COVID-19 and periodontitis: Possible protective effect of melatonin. Med Hypotheses. 2021 Jun;151:110588. doi: 10.1016/j.mehy.2021.110588.
    • Shi Z, Puyo CA. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Ther Clin Risk Manag. 2020;16:1047-1055. Published 2020 Nov 2. doi:10.2147/TCRM.S273700.
    • Talukdar J, Bhadra B, Dattaroy T, Nagle V, Dasgupta S. Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomed Pharmacother. 2020;132:110886. doi:10.1016/j.biopha.2020.110886.
    • VasanthiDharmalingam P, Karuppagounder V, Watanabe K, Karmouty-Quintana H, Palaniyandi SS, Guha A, et al. SARS-CoV-2 Mediated Hyperferritinemia and Cardiac Arrest: Preliminary Insights. Drug Discov Today. 2021 May;26(5):1265-1274. doi: 10.1016/j.drudis.2021.01.014.
    • Wang H, Rizvi SRA, Dong D, Lou J, Wang Q, Sopipong W, et al. Emerging variants of SARS-CoV-2 NSP10 highlight strong functional conservation of its binding to two non-structural proteins, NSP14 and NSP16. Elife. 2023 Dec 21;12:RP87884. doi:  10.7554/eLife.87884.
    • Weir EK, Thenappan T, Bhargava M, Chen Y. Does vitamin D deficiency increase the severity of COVID-19?. Clin Med (Lond). 2020;20(4):e107-e108. doi:10.7861/clinmed.2020-0301.
    • Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 52, 329–360 (2020). https://doi.org/10.1007/s00726-020-02823-6.
    Publication of the article «World of Medicine and Biology» №1(91), 2025 year, 212-219 pages, index UDK 614.4; 616-08
    DOI 10.26724/2079-8334-2025-1-91-212-219