Список цитованої літератури |
- Amirova, MF, Azizova, Gİ. SARS-CoV-2 Virus Transmission Mechanism in the Human Body. Pakistan journal of biochemistry and molecular biology. 2021;4(1-2): 14–20.
- Avdonin PP, Rybakova EY, Trufanov SK, Avdonin PV. SARS-CoV-2 Receptors and Their Involvement in Cell Infection. Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2023;17(1):1-11. doi: 10.1134/S1990747822060034.
- Bagheri Hosseinabadi M, Khanjani N, Norouzi P, Faghihi-Zarandi A, Darban-Sarokhalil D, Khoramrooz SS, et al. The Effects of Antioxidant Vitamins on Proinflammatory Cytokines and Some Biochemical Parameters of Power Plant Workers: A Double-Blind Randomized Controlled Clinical Trial. Bioelectromagnetics. 2021 Jan;42(1):18-26. doi: 10.1002/bem.22294.
- Buckley LF, Wohlford GF, Ting C. Role for Anti-Cytokine Therapies in Severe Coronavirus Disease 2020. Crit Care Explor. 2020;2(8):e0178. Published 2020 Aug 10. doi:10.1097/CCE.0000000000000178.
- Carcaterra M, Caruso C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physio-pathological theory. Med Hypotheses. 2021 Jan;146:110412.
- Chaolin H, Yeming W, Xingwang L, Lili R, Jianping Z, Yi H et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020; 395(10223):497 – 5061.
- Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023 May 10;11:1158198. doi: 10.3389/fchem.2023.1158198.
- Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62-75.
- Dabholkar N, Gorantla S, Dubey SK, Alexander A, Taliyan R, Singhvi G. Repurposing methylene blue in the management of COVID-19: Mechanistic aspects and clinical investigations. Biomed Pharmacother. 2021 Oct;142:112023. doi: 10.1016/j.biopha.2021.112023.
- DE Flora S, Balansky R, LA Maestra S. Antioxidants and COVID-19. J Prev Med Hyg. 2021 Jun 5;62(1 Suppl 3):E34-E45. doi: 10.15167/2421-4248/jpmh2021.62.1S3.1895.
- De Melo AF, Homem-de-Mello M. High-dose intravenous vitamin C may help in cytokine storm in severe SARS-CoV-2 infection. Crit Care. 2020;24(1):500. Published 2020 Aug 13. doi:10.1186/s13054-020-03228-3.
- Forcados GE, Muhammad A, Oladipo OO. Metabolic Implications of Oxidative Stress and Inflammatory Process in SARS-CoV-2 Pathogenesis: Therapeutic Potential of Natural Antioxidants REVIEW article. Front. Cell. Infect. Microbiol., 26 May 2021. https://doi.org/10.3389/fcimb.2021.654813.
- Gasparello J, D'Aversa E, Papi C, Gambari L, Grigolo B, Borgatti M, et al. Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein. Phytomedicine. 2021 Jul;87:153583. doi: 10.1016/j.phymed.2021.153583.
- Hiroyuki N, Masaaki M. Neurobiology of COVID-19-Associated Psychosis/Schizophrenia: Implication of Epidermal Growth Factor Receptor Signaling. Neuropsychopharmacology Reports. 2025; 45(1): e12520.
- Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020;257:118102.
- Kabekkodu Sh, Chakrabarty S, Jayaram P, Mallya S, Thangaraj K, Singh KK, et al.Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion. 2023; 69:43-56,ISSN 1567-7249. https://doi.org/10.1016/j.mito.2023.01.005.
- Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens. 2024; 13(2):164. https://doi.org/10.3390/pathogens13020164.
- Liu DX, Liang, JQ, Fung, TS Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). Encyclopedia of Virology, 2021: 428–440. https://doi.org/10.1016/B978-0-12-809633-8.21501-X.
- Mathieu E , Bernard AS , Ching HYV , Somogyi A , Medjoubi K , Fores JR , et al. Anti-inflammatory activity of superoxide dismutase mimics functionalized with cell-penetrating peptides. Dalton Trans. 2020 Feb 21;49(7):2323-2330. doi: 10.1039/c9dt04619d.
- Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2021;21(1):103-115. https://doi.org/10.3389/fgene.2021.622271.
- Muhammad JS, ElGhazali G, Shafarin J, Mohammad MG, Abu-Qiyas A, Hamad M. SARS-CoV-2-induced hypomethylation of the ferritin heavy chain (FTH1) gene underlies serum hyperferritinemia in severe COVID-19 patients. Biochem Biophys Res Commun. 2022 Nov 26;631:138-145. doi: 10.1016/j.bbrc.2022.09.083.
- Muhammad JS, Saheb Sharif-Askari N, Cui ZG, Hamad M, Halwani R. SARS-CoV-2 Infection-Induced Promoter Hypomethylation as an Epigenetic Modulator of Heat Shock Protein A1L (HSPA1L) Gene. Front Genet. 2021 Feb 19;12:622271. doi: 10.3389/fgene.2021.622271.
- Nepogodiev HA, Glasbey D, Li JC, Gujjuri OM, Morton RR, Mantoglu DG. Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study. 2020. The Lancet, 396 (10243), pp. 27-38. doi: 10.1016/S0140-6736(20)31182-X.
- Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020 Jul 13;24(1):422. doi: 10.1186/s13054-020-03120-0.
- Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, et al. Autophagy, aging, and age-related neurodegeneration. Neuron. 2025 Jan 8;113(1):29-48. doi: 10.1016/j.neuron.2024.09.015.
- Perreau M, Suffiotti M, Marques-Vidal P. The cytokines HGF and CXCL13 predict the severity and the mortality in COVID-19 patients. Nat Commun 12, 4888 (2021). https://doi.org/10.1038/s41467-021-25191-5.
- Saeedi-Boroujeni A, Mahmoudian-Sani MR. Anti-inflammatory potential of Quercetin in COVID-19 treatment. J Inflamm 18, 3 (2021). https://doi.org/10.1186/s12950-021-00268-6.
- Şehirli AÖ, Aksoy U, Koca-Ünsal RB, Sayıner S. Role of NLRP3 inflammasome in COVID-19 and periodontitis: Possible protective effect of melatonin. Med Hypotheses. 2021 Jun;151:110588. doi: 10.1016/j.mehy.2021.110588.
- Shi Z, Puyo CA. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Ther Clin Risk Manag. 2020;16:1047-1055. Published 2020 Nov 2. doi:10.2147/TCRM.S273700.
- Talukdar J, Bhadra B, Dattaroy T, Nagle V, Dasgupta S. Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomed Pharmacother. 2020;132:110886. doi:10.1016/j.biopha.2020.110886.
- VasanthiDharmalingam P, Karuppagounder V, Watanabe K, Karmouty-Quintana H, Palaniyandi SS, Guha A, et al. SARS-CoV-2 Mediated Hyperferritinemia and Cardiac Arrest: Preliminary Insights. Drug Discov Today. 2021 May;26(5):1265-1274. doi: 10.1016/j.drudis.2021.01.014.
- Wang H, Rizvi SRA, Dong D, Lou J, Wang Q, Sopipong W, et al. Emerging variants of SARS-CoV-2 NSP10 highlight strong functional conservation of its binding to two non-structural proteins, NSP14 and NSP16. Elife. 2023 Dec 21;12:RP87884. doi: 10.7554/eLife.87884.
- Weir EK, Thenappan T, Bhargava M, Chen Y. Does vitamin D deficiency increase the severity of COVID-19?. Clin Med (Lond). 2020;20(4):e107-e108. doi:10.7861/clinmed.2020-0301.
- Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 52, 329–360 (2020). https://doi.org/10.1007/s00726-020-02823-6.
|